• Three rules to find the symmetries of a polar graph: 1. If replacing $(r,\theta) \rightarrow (-r,-\theta)$ or $(r,\theta) \rightarrow (r,\pi-\theta)$ does not change the equation, then symmetry is about $\theta = \frac{\pi}{2}$ (y-axis). 2. If either replacing $(r,\theta) \to (r,-\theta)$ or $(r,\theta) \to$ $(-r, \pi - \theta)$ does not change the equation, then the symmetry is about $\theta = 0$ (or polar axis or *x*-axis). 3. If replacing $(r,\theta) \rightarrow (-r,\theta)$ or $(r,\theta) \rightarrow (r,\theta+\pi)$ does not change the equation, then the symmetry is about the pole (origin).

• How to graph

- Find the symmetries of the graph. Use identities $\cos(-\theta) = \cos(\theta)$, $\sin(-\theta) = -\sin(\theta)$, $\cos(\pi \theta) = -\cos(\theta)$ and $\sin(\pi \theta) = \sin(\theta)$. Be aware that some symmetries don't reveal themselves until you graph. The only way to check for all symmetries is to check all three rules with $2k\pi$ added to angles for each integer k.
- Find points where the max and the min of the trigonometric functions happen.
- Find values of θ where r = 0.
- Find extra points. Make a table.
- Graph.

- Equations of the Form $r = a + b\sin(\theta)$ or $r = a + b\cos(\theta)$
 - 1. Circle $r = a\cos(\theta)$.

2. Circle $r = a \sin(\theta)$.

3. Cardioid $r = a + a\cos(\theta)$. (General form $r = a \pm a\cos(\theta)$ or $r = a \pm a\sin(\theta)$ for a > 0.)

4. Cardioid $r = a + a \sin(\theta)$.

5. One Loop Limaçon $r = a + b\cos(\theta)$, a > b > 0. (General form is $r = a + b\cos(\theta)$ or $r = a + b\sin(\theta)$ where a > b > 0.) If also a < 2b, the indent will appear, a.k.a. dimpled Limaçon.

6. Inner Loop Limaçon $r = a + b\cos(\theta)$, b > a > 0. (General form is $r = a + b\cos(\theta)$ or $r = a + b\sin(\theta)$ where b > a > 0.)

7. Lemniscate $r^2 = b\cos(2\theta)$, b > a > 0. (General form is $r^2 = \pm b\cos(2\theta)$ or $r^2 = \pm b\sin(2\theta)$.) This is tricky on the calculator since not all of the points will show up in the process of square rooting.

• Other Graphs:

- 1. Rose Curve $r = b\cos(4\theta)$. (General form is $r = b\cos(n\theta)$ or $r = b\sin(n\theta)$. If n is even, 2n petal will show. If n is odd, npedal will show.)
- 3. Archimedes' Spiral $r = \theta$ for $\theta > 0$.

2. Rose Curve $r = b\cos(3\theta)$.

To view a computer generated graph of Rose Curve, go to https://www.geogebra.org/graphing/nb8j4ygn. Enter n and click play on slider a.

A Quick Tip: When graphing, it pays off to remember the approximate shape of the graph and choose your points to plot accordingly.

- 1. Find the symmetries of the following polar equations using the three rules.
 - (a) $r = 2 2\cos(\theta)$ (b) $r^2 = \sin(\theta)$ (c) $r = \sin(\theta)$

2. Graph $r=1+2\sin(\theta)$ on interval $[0,2\pi].$

3. Graph $r = 3\sin(2\theta)$ on the interval $[0, 2\pi]$. Label each pedal in the order they appear in the domain.

4. (a) Graph $r=3.5~\sin(5\theta)$ on the interval $[0,\pi].$

- (b) Mark the piece of the graph restricted to domain $\left[\frac{\pi}{5}, \frac{2\pi}{5}\right]$.
- (c) What happens if we sketch over the domain $[0, 2\pi]$?

5. Graph $r = 0.5 \ \theta$ for $0 \le \theta \le 3\pi$.

Example Video:

 $https://mediahub.ku.edu/media/t/1_sxz2xve3$